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AN ALGORITHM FOR ISENTROPIC FLOW 
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SUMMARY 

An efficient algorithm is presented for the solution of the equations of isentropic gas dynamics with a general 
convex gas law. The scheme is based on solving linearized Riemann problems approximately, and in more 
than one dimension incorporates operator splitting. In particular, only two function evaluations in each 
computational cell are required. The scheme is applied to a standard test problem in gas dynamics for a 
polytropic gas. 

KEY WORDS Isentropic flow 

1. INTRODUCTION 

In 1988 Glaister' proposed an approximate linearized Riemann solver for the Euler equations of 
gas dynamics for non-ideal gases in one dimension. The scheme has good shock-capturing 
properties and has proved successful in its application to some standard test problems. There are 
applications, however (e.g. the flow of natural gas in a pipe), where it is not necessary to use the 
full Euler equations but to assume that the flow is isentropic. In such situations it is appropriate 
to use a simplified Riemann solver for the reduced set of equations. We seek here to devise an 
efficient scheme that has good shock-capturing properties and applies to the equations of 
isentropic flow for any convex gas law. 

In Section 2 we consider the Jacobian matrix of the flux functions for the equations of 
isentropic flow with a general gas law, and in Section 3 derive an approximate Riemann solver for 
the solution of these equations. Finally, in Section 4 we display the numerical results achieved for 
a standard test problem in gas dynamics. 

2. EQUATIONS O F  FLOW 

In this section we state the equations of flow considered and give the eigenvalues and eigenvectors 
of the Jacobian matrix of one of the corresponding flux functions. We discuss the two- 
dimensional case for simplicity, but the extension to three dimensions is straightforward. 

2.1. Equations of motion 

The two-dimensional equations of isentropic flow can be written in conservation form as 

w, + f, + gv= 0, (1) 
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where 
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w = ( P ,  pu, pv)T, (2) 
f=  (PUT P + PU2,  pUV)T, (3) 

ti!=@, p w  P+PV2)T. (4) 

The quantities ( p ,  u, u, p) = ( p ,  u, u, p)(x, y, t )  represent the density, the velocity in the two co- 
ordinate directions and the pressure at a general position (x, y) in space at time t. In addition we 
assume that there is a gas law connecting p and p written as 

P = P ( P ) -  (5 )  
We assume further that the derivative dp/dp of equation (5) can be determined. 

2.2. Jacobian 

The Jacobian matrix A = af/dw has eigenvalues 

Aj=u+a,u ,  j = 1 ,  . . . , 3, 

with corresponding eigenvectors 

e1.2=(1, ufa, uIT, 

e3 = (090, 

where the sound speed a is given by 

a2 = dp/dp 

from equation (5). Similar expressions can be found for the Jacobian dgldw. 

3. APPROXIMATE RIEMANN SOLVER 

In this section we develop an approximate Riemann solver for the equations of isentropic flow in 
two dimensions with a general convex gas law which incorporates the technique of operator 
splitting. 

We seek to solve equations (1)-(5) approximately using operator splitting, i.e. we solve 
successively 

w, + r, = 0 (94 

w, + g, =o 
and 

along x- and y-co-ordinate lines respectively. We consider approximate solutions of equation (9a); 
then a similar analysis will give approximate solutions of equation (9b). 

3.1. Waue speeds for nearby states 

Following Godunov,2 we consider the solution at any time to consist of a series of piecewise 
constant states. Our aim is then to solve each of these linearized Riemann problems approxim- 
ately. 
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Consider two (constant) adjacent states wL and w, (left and right) close to an average state w, at 
points L and R on an x-co-ordinate line. We assume that we have approximate eigenvectors 

r,, 2 =(I, u+a, U)', 

r3 =(o, 0, 1)' 
corresponding to the average state w. 

We now seek coefficients a, ,  u2 and u3 such that 

Aw=alrl +u2r2+a3r3 (lla-c) 

to within O(A2), where A( * )=(  - ) L .  
From equations (1 la) and (1 lc) we obtain 

but 
a3 = A(pv)- vAp, 

A(pU)=pAU+UAp, U = u  or u, 

to within O(A2), so that 

Also, from equations (1 1 a), (1 1 b) and (1 3) we find that 

a3 = pAv. 

a(a, -ct2)=pAu, 
and equation (1 la) gives 

u1 + a2 = Ap. (16) 
Thus combining equations (15) and (16) we have 

a1.2 =$CAP f ( P M  A U I  9 
together with a3 from (14). 

We have found u, ,  a2 and u3 such that 
3 

j =  1 
Aw= C ajrj  

to within O(A2), and a routine calculation verifies that 
3 

j= 1 
Af= Ajajrj (19) 

to within O(A2). We are now in a position to construct the approximate Riemann solver. 

3.2. Decomposition for general wL and w, 

Consider the algebraic problem of finding average eigenvalues I,, 1, and 1, and corresponding 
average eigenvectors i l ,  F2 and i3 such that relations (18) and (19) hold exactly for arbitrary states 
w, and W, not necessarily close. Specifically, we seek averages p ,  ii, ij and ii in terms of two 
adjacent states wL and wR (on an x-co-ordinate line) such that 

3 

j =  1 

3 

j= 1 

A w =  C E t j F j ,  

Af= C I j k j F j ,  
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where 
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We note that the solution to this problem is equivalent to seeking an approximation to the 
Jacobian A, namely A, with eigenvalues x i  and eigenvectors Fi, such that 

Af = AAw . (29) 

The first step in the analysis of the above problem is to write out equations (20) and (21) 
explicitly, namely 

Ap=C1 + E 2 ,  (304 

A(Pu)= i?l(ii+ a)+ d,(G-ii) ,  (30b) 

A(pu)=C,ij+ B2C+ a,, 
A( PU) = d l  (6 +a') + d2(ii  - 6 )  , 

Solving we find that 

together with 

Equation (34) is readily satisfied by 

Ap = ii2 Ap . (34) 

By symmetry, similar results hold for the Jacobian ag/aw 
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Summarizing, we can now apply the Riemann solver given above to the two-dimensional 
isentropic equations with a general convex gas law using the technique of operator splitting. We 
can incorporate the results found here, together with any explicit one-dimensional scalar upwind 
algorithm, and perform a sequence of one-dimensional calculations along computational grid 
lines in the x- and y-direction in turn. The algorithm along a line y = constant can be described as 
follows. Suppose at time level n we have data wL and wR given at either end of the cell ( x L ,  x R )  (on a 
line y = yo), then we update w to time level n + 1 in an upwind manner. Thus we 

At - 
add -- 1 . 5 . ~ .  to wR if X ~ > O  

Ax "' 
or 

add - 
At 
- I.E.F. to wL if I j < 0 ,  
Ax J J '  

where Ax = xR - x L ,  At is the time interval from level n to n + 1, and X j ,  hi and Fj are given by - 
I,,,,,=tifC?, ti, 

F1,,=(1, ii+ii, qT, 

F3 = (0, 0, 1)T, 

51 ,2 ,3  = W p  * i w a  t P A 4  

with 

Z2 given by equations (35) and A( -)=( *)R - ( o ) ~ .  Similar results apply for updating in the y- 
direction. 

The Riemann solver we have constructed in this section is a conservative algorithm (when 
incorporated with operator splitting) and has the important one-dimensional shock-recognizing 
property guaranteed by equations (20) and (21). Furthermore, the algorithm is efficient in the 
sense that only two function evaluations of the gas law are required in each computational cell. 

4. NUMERICAL RESULTS 

In this section we give the numerical results achieved for a two-dimensional test problem using 
the scheme of Section 3. 

This two-dimensional test problem is concerned with Mach 3 flow in a tunnel containing a 
step. The tunnel is 3 units long and 1 unit wide. The step is 0.2 units high and is located 0.6 units 
from the left-hand end of the tunnel. At the left an inflow boundary condition is applied, and at 
the right, where the exit velocity is supersonic, all gradients are assumed to vanish. The initial 
conditions for the gas in the tunnel are given by ( p o ,  uo, 00)=(1.4,3,0) and hence po  from the gas 
law p o  = p ( p o ) .  Gas is continually fed in at the left-hand boundary with the flow variables taking 
the initial values given above. 

The gas law chosen is one for a polytropic gas and can be written as 

P =(P IP , )y ,  
where y =  1.4 so that p o =  1. 
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Figure 1. Results for problem at I = 0.5: bow shock formation 
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Figure 2. Results for problem at t =  1.5: reflection at upper wall 

Figure 3. Results for problem at t = 4Q reflection at lower wall 

Figures 1, 2 and 3 display 31 equally spaced density contours at times t=0-5, 1.5 and 40 
respectively. The figures represent formation of the bow shock, reflection at the upper wall and 
reflection at the lower wall respectively. A uniform 120 x 40 mesh was used and the second-order 
scalar algorithm with the ‘superbee’ limiter.3 
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(N.B. For both problems we apply a reflection boundary condition at a rigid wall, i.e. we 
consider an image cell and impose equal density and tangential velocity (for two-dimensional 
problems), and equal and opposite normal velocity at either end of the cell.) 

5. CONCLUSIONS 

We have presented a simple Riemann solver for the equations of isentropic Row with a general 
convex gas law. The scheme has the property that only two function calls are required per cell, 
and has good shock-capturing properties. This results in an efficient algorithm that has produced 
satisfactory results for a standard test problem in gas dynamics, and is useful when the flow is 
known to be isentropic and the full Euler equations do not need to be solved. 
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